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Introduction

Physical processes in hydrocarbon flames are highly complex and interact in a strongly non-lin-
ear fashion. Numerical experimentation is an excellent way to isolate physical processes, study
their interactions, or predict important properties such as flammability limits. Only highly de-
tailed models that include complex chemistry and diffusive processes can obtain the correct
flammability limits. To date, sufficiently detailed calculations for hydrocarbon flames have only
been carried out for steady-state flames. However, the extinction of hydrocarbon flames is a mul-
tidimensional, transient process. Numerous two-dimensional calculations of detailed hydrogen
flames [1-3] and some preliminary calculations of transient methane flames with moderately
detailed chemistry have been carried out at the Naval Research Laboratory [4]. For heavier hy-
drocarbon fuels, which are of more practical interest, the computational requirements are cur-
rently beyond the capabilities of current vector supercomputers. Thus it is imperative that a de-
tailed flame code be ported to massively parallel computers, which have the potential to handle
these problems.

The numerical model used in the NRL flame code [5] is predominantly based on structured
finite volume methods. The chemistry is modeled by a system of ordinary differential equations

which is solved independently at each grid point. Thus, though the model uses a mesh struc-
ture, the workload at each grid point can vary considerably. It is this feature that requires the
use of both structured and unstructured methods in the same code.

Parallel Implementation

The solution methods for the various physical processes in the flame can be placed into one of

two groups:
Structured: where the computation is based on structured meshes. Certain processes,

e.g. heat conduction, are represented by partial differential equations which are discretized by a
finite volume technique. In these methods, the solution procedure requires a good deal of com-
munication with neighboring points, but the amount of computation at each point is nearly the
same.

Independent: where computation at each grid point can be carried out independently
without requiring any communication between neighboring points, e.g. radiation, chemistry.
However, the solution procedure may require a different amount of computation at each grid
point. This distribution of work load will change from time step to time step as the flame evolves.

The Multiblock PARTI runtime support library [6] has been developed to parallelize multiblock
and multigrid codes on distributed memory (MIMD) machines. This library allows program-
mers to lay out distributed arrays in a flexible way, give high level description for performing
data movement, and distribute computation across processors. Multiblock PARTI has been used
in the NRL flame code for all structured processes. A multigrid method is used as the solution
technique for the elliptic equation that arises in the fluid convection model. The restriction and
prolongation operations for shifting between different multigrid levels require moving regular
array sections with non-unit strides. These operations have been implemented using Multiblock
PARTI.
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The PARTI library was incorporated into the existing sequential flame code with after some al-
terations to the code. It is important that the data and temporary working array layout in the se-

quential code is suitable for domain decomposition, but usually this is not true in existing serial
and vector programs. Changing the layout to make it suitable proved to be quite time consum-
ing. The naive approach of promoting all temporaries to arrays is wasteful of memory and is
not needed on MIMD machines since only data that is involved in near-neighbor operations

needs to be promoted.

To balance the work load of the chemistry process, the block-partitioned data must be redistribut-
ed across processors, and then returned to their original locations for the next structured pro-
cess. This approach inherently requires a substantial amount of communication at every time

step. Two new algorithn_,.s, Binpack and Binso_rt, which perform this redistribution of work load
and reduce communicamon vomme at low cu_ have been implemented using the CHAOS li-

brary [7]. The Binpack algorithm determines which processors are overly loaded and which
processors are lightly loaded, computes the amount of work that must be moved from overly
loaded processors to lightly loaded processors, and then generates a load balancing plan.
Binsort is a heuristic for improving the performance of Binpack by reducing the communication
volume for redistributing the work load. The Binsort algorithm achieves this by selecting for
movement those grid points with greater amounts of work; thus fewer number of grid points
need to be considered by Binpack to attain a load balance. A good estimate of the work load is
needed, however is hard to obtain this for a sophisticated ODE solver. Once an estimate is made

however, Binpack will balance the load almost exactly.

Results

The parallel flame code has been implemented on the Intel iPSC/860 and Paragon computers.
Calculations have been performed on an extinguishing 4.5% methane-air flame in a 5.1 cm
isothermal channel. The OH mole fraction at 0.18 secs. is presented in Fig. 1. These prelimi-

nary results suggest that the extinguishment mechanism may be similar to that in a hydrogen-
air flame [3].

For this methane computation on a 256 X 256 grid, it requires 50 nodes of the Intel Paragon to

equal one CRAY C-90 processor. The timings of the important processes is shown in Fig. 2. All
processes except the fluid convection scale well. The fluid convection does not scale due to the
large amount of communication and scalar code required by the multigrid solution procedure.

The chemistry takes 60 - 70% of the total time; thus it is very important that a good load balance
is achieved. The workload distribution (in arbitrary units) at a late time is shown in Fig. 3. The
workload in the two spots near the wall is as high as 80 times the smallest workload. Load bal-

ancing improves the chemistry run time by 30% for an overall savings of 20%.

Conclusions

An extinguishing methane-air flame has been simulated using a detailed, two-dimensional.
time-dependent, numerical model on the Intel iPSC/860 and Paragon parallel computers. The

performance of a single processor CRAY C-90 can be equaled with 50 Paragon processors. Since
Paragon systems with hundreds of processors are available, it is now possible to solve very large

problems.

The PARTI software is available on various other MIMD computers, and the flame code will be

implemented on these other computers as well, especially the IBM SP-2. The SP-2 is expected to
be 5-10 times faster than the Intel Paragon. With the development of the parallel flame code on
this machine, it will be possible to attempt three-dimensional, time-dependent calculations with

detailed hydrocarbon chemistry for the first time.
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Figure 1. OH Mole Fraction at 0.18 secs.
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